Plant Archives Vol. 25, Special Issue (ICTPAIRS-JAU, Junagadh) Jan. 2025 pp. 595-602 e-ISSN:2581-6063 (online), ISSN:0972-5210

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.SP.ICTPAIRS-084

ENHANCING PHOSPHORUS UTILIZATION EFFICIENCY IN SUMMER GROUNDNUT THROUGH MICROBIAL CULTURE

V.L. Kikani^{1*}, S.P. Kachhadiya², C.N. Jadav² and R.B. Madariya²

¹Wheat Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India. ²Main Oilseed Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India. *Corresponding author E-mail : vlkikani@jau.in

ABSTRACT ABSTRACT ABST

Key words : Groundnut, Microbial culture, Nutrient uptake, Phosphorus, Quality parameters.

Introduction

Groundnut (Arachis hypogaea L.) contains high quality edible oil (48 per cent), easily digestible protein (26 per cent) and carbohydrates (20 per cent) therefore considered as "king of oilseed" among the oilseed crops and botanically classified in family Fabaceae (Das et al., 2005). Groundnut provides an inexpensive source of highquality dietary protein and oil to millions of people in world especially in developing counties also it is a source of considerable amounts of mineral elements to supplement the dietary requirements of humans and farm animals. (Asibuo et al., 2008). Peanut oil like other vegetable oil is determined on the ester which is made up of straight chain higher fatty acids and glycerine. The fatty acids include the unsaturated; palmitic acid and stearic acid, mono unsaturated fatty acids; such as oleic acid and polyunsaturated fatty acids such as linoleic acid, linolenic acid.

As per estimate, groundnut is grown in India on 4.56 million hectare and production of 6.77 million tonnes with

an average productivity of 1486 kg/ha (DAC and FW, 2016). In India, about 80 per cent of the area and 84 per cent of the production of groundnut is confined to the states of Gujarat, Andhra Pradesh, Tamil Nadu, Karnataka and Maharashtra. However, it is also grown in Uttar Pradesh, Tamil Nadu, Punjab and west Bengal. Among the groundnut producing states, Gujarat is the topmost state both in area and production. Within Gujarat, the Saurashtra region is considered as "bowl of groundnut". It has been witnessed that the area under groundnut is also increasing in potato growing areas of North Gujarat considerably because of suitable agro-climatic conditions and coarse texture soil. Phosphorus is an indispensable mineral nutrient for legume crops, crucial for enhancing root growth and development, thus optimizing biological nitrogen fixation. It is integral to metabolic activities as a constituent of nucleoproteins and nucleotides, and it plays a pivotal role in forming energy-rich phosphate bonds like those found in ADP and ATP. Bio-fertilizers containing phosphate-solubilizing bacteria (PSB) can effectively meet the phosphorus requirements of crops by solubilizing insoluble phosphorus sources. Plant growth-promoting bacteria (PGPR), a group of free-living microorganisms, employ various methods to enhance plant growth (Glick B.R., 1995). Some of these bacteria, belonging to the group of phosphate-solubilizing bacteria (PSB), increase phosphorus uptake, thereby serving as biological fertilizers to improve plant growth and yield (Chen et al., 2006). Aspergillus niger and Penicillium strains are the most common fungi capable of phosphate solubilization. Phosphorus is typically added in the form of phosphatic fertilizers, part of which is utilized by plants, while the remainder is converted into soluble fixed forms. To address phosphorus deficiency, phosphate-solubilizing microorganisms (PSM) could play a crucial role in supplying phosphate to plants in a more environmentallyfriendly and sustainable manner. With this perspective, the present investigation was conducted to examine the growth, yield, yield attributes, and economics of *kharif* groundnut influenced by integrated nutrient management strategies.

Materials and Methods

The field experiments were conducted during summer season of 2019, 2020 and 2021 at Main Oilseeds Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India. The soil of the experimental plot having pH 7.65. The soil was low in available nitrogen 215 kg/ha, medium in phosphorus 29.60 kg/ha and potash 289 kg/ha. The experiment was laid out in randomized block design with three replications. The experiment consisted of twelve treatment combinations of seed treatment with DGRC culture inoculants @ 10g/ kg or seed treatment with PSB culture inoculants @ 15g/ kg groundnut seed (cv. GJG-31) with different doses of phosphorus (20 kg, 40 kg and 60 kg/ha) the treatment details viz., Control (no application of P), application of 20 kg/ha of P, application of 40 kg/ha of P, application of 60 kg/ha of P, application of 20 kg/ha of P+DGRC culture, application of 40 kg/ha of P+DGRC culture, application of 60 kg/ha of P+DGRC culture, application of FYM @ 2.5 t/ha, application of FYM @ 2.5 t/ha + DGRC culture, application of DGRC culture enriched FYM@100 kg/ ha, application of FYM @ 5 t/ha + PSB culture and application of 40 kg/ha of P+ PSB culture. Application of recommended dose of farmyard manure, nitrogen, potash and seed rate was applied. The cultural practices, irrigation and plant protection measures were taken as and when required.

Results and Discussion

Growth Parameters and Phosphorous Fertilization

Three years pooled data presented in Tables 1, 2 and

3 revealed that the growth and yield attributes significantly influenced by different treatments. Significantly higher plant height (21.30 cm) was observed in application of FYM @ 5 t/ha + PSB (15ml/kg seed) and which is on par with the application of 40 kg/ha of P + PSB, application of 40 kg/ha of P + DGRC culture (15g/kg seed), application of DGRC culture (2 kg) enriched FYM@100 kg/ha, application of FYM @ 2.5 t/ha+ DGRC culture (10g/kg seed) and application of 60 kg/ha of P + DGRCculture (10g/kg seed). Whereas, number of branches per plant (4.04), number of pods per plant (14.52) and 100 kernel weights (43.10g) were significantly recorded by application of 40 kg/ha of P + DGRC culture (15g/kg seed). Number of branches per plant (4.04) and number of pods per plant (14.52) were also at par with all the treatments except control (no application of P), application of 20 kg/ha of P, application of 20 kg/ha of P + DGRC culture (10g/kg seed), application of DGRC culture (2 kg) enriched FYM@100 kg/ha and application of 60 kg/ha of P in case of number of branches per plant. The optimum availability of P to sustain crop growth. Further, P is a key component of molecules necessary for root growth and development, respiration, nucleic acid synthesis, N fixation, plant maturity and seed production (Raychaudhury et al., 2003). Phosphorus is required in greater amounts for pulse crops than many other crops due to its high demand in energy transfer molecules used in nitrogen fixation. Moreover, integration of both organic and inorganic nutrient sources might improve fixation of nitrogen and to reduce the movement of P to non-liable pools in the soil solution and also reduce the adsorption and immobilization of P (Ramana et al., 2002), which could be one of the reasons for higher dry matter production and growth of groundnut.

Effect of different P management options with PSB cultures on groundnut productivity

Three years pooled data presented in Table 4, Significantly year wise higher pod yield (2128 kg/ha, 3167 kg/ha), haulm yield (3380 kg/ha, 5135 kg/ha), kernel yield (1466 kg/ha, 2207 kg/ha) and oil yield (721 kg/ha, 1105 kg/ha) was recorded by application 40kg/ha of P + PSB culture @ 15 ml/kg or DGRC culture inoculated seeds in both the years of 2019 and 2020 and which was remained at par with application of 40 kg/ha of P (T₃), application of 60 kg/ha of P (T₄), application of 40 kg/ha of P + DGRC culture(15g/kg seed) (T₆), application of 60 kg/ha of P + DGRC culture (10g/kg seed) (T₇) and application of 20 kg/ha of P also at par in the year of 2020. In the year of 2021, non-significant effects were observed on pod yield, haulm yield, kernel yield and oil

		Pooled	69.69	67.48	67.85	67.82	68.71	68.95	67.87	67.41	68.08	67.38	69.54	69.45	0.35	0.99	1.56	0.17	0.47	0.61	SN
	% %	2021	67.06	67.91	68.49	68.66	68.80	68.71	68.03	67.78	68.83	68.25	06.69	69.81	0.65	SN	2.11				
5	Shelling	2020	66.92	67.77	69.00	68.52	68.65	68.57	67.93	67.60	68.08	67.31	69.80	69.72	0.59	1.74	1.51	1	1	1	1
		2019	66.10	66.77	66.05	66.27	68.67	69.57	67.67	66.85	67.33	66.56	68.92	68.83	0.61	1.78	1.56	1	1	1	1
ut.		Pooled	11.81	12.18	13.26	13.04	12.78	14.52	14.15	13.48	13.63	12.70	13.96	14.44	0.54	1.54	12.26	0.20	0.57	0.94	SS
iroundn	s/plant	2021	14.44	15.11	15.00	16.44	16.44	16.66	16.22	16.22	16.44	15.11	16.11	16.11	1.34	SS	14.68			ı	1
itage of (No. of pods/plant	2020	12.78	12.22	15.11	13.11	12.67	16.00	15.45	14.78	14.89	13.89	15.00	16.55	0.78	2.29	9.41	1	1	1	1
ig percen	Ž	2019	8.22	9.22	9.67	9.55	9.22	10.89	10.78	9.44	9.56	9.11	10.78	10.67	0.51	1.48	8.97			ı	1
d Shellin		Pooled	3.33	3.41	3.70	3.55	3.48	4.04	4.00	3.59	3.67	3.52	4.00	4.00	0.13	0.37	10.57	0.05	0.14	0.23	NS
pods an	inches	2021	3.22	3.44	3.56	3.56	3.67	3.89	3.78	3.56	3.67	3.44	3.78	3.66	0.31	SN	14.88			ı	1
umber of	No. of branches	2020	3.55	3.33	4.00	3.66	3.44	4.11	4.11	3.89	4.00	3.66	4.22	4.22	0.17	0.48	7.43			ı	1
iches, Ni	4	2019	3.22	3.44	3.56	3.44	3.33	4.11	4.11	3.33	3.33	3.44	4.00	4.11	0.17	0.50	8.16				1
umber of branches, Number of pods and Shelling percentage of Groundhut.		Pooled	17.52	18.15	17.59	19.11	18.67	20.41	19.41	19.26	19.64	20.26	21.30	21.04	0.67	1.89	10.35	0.36	1.01	1.16	SN
t, Numbo	ght(cm)	2021	16.78	17.44	14.67	18.78	15.89	18.89	17.78	18.67	18.26	19.67	19.89	19.78	1.33	SS	12.81		1	1	1
nt heigh	Plant height(cm)	2020	17.55	18.11	19.22	19.22	20.11	22.22	21.11	20.67	21.22	22.67	24.89	23.11	1.24	3.62	10.26	1	1	1	1
ts on Pla	24	2019	18.22	18.89	18.89	19.33	20.00	20.11	19.33	18.44	19.44	18.45	19.11	20.22	0.84	SS	7.6				1
Iable 1: Effect of different 1 reatments on Plant height, N	Treatments		\mathbf{T}_{1} Control (no application of P)	\mathbf{T}_2 Application of 20 kg/ha of P	T ₃ Application of 40 kg/ha of P	\mathbf{T}_4 Application of 60 kg/ha of P	T _s Application of 20 kg/ha of P + DGRC culture(10g/kg seed)	T ₆ Application of 40 kg/ha of P+ DGRC culture(15g/kg seed)	T, Application of 60 kg/ha of P+ DGRC culture(10g/kg seed)	T ₈ Application of FYM@2.5t/ha	T ₉ Application of FYM@2.5t/ha + DGRC culture(10g/kg seed)	T10Application of DGRC culture(2 kg) enriched FYM@ 100kg/ha.	$ T_{II} Application of FYM @ 5 t/ha + PSB (15ml/kg seed) $	\mathbf{T}_{12} Application of 40 kg/ha of P+PSB	S.Em.±	C.D. at 5%	C.V.%	Y S.Em.±	C.D. at 5 %	YXTS.Em. ±	C.D. at 5%

Table 1: Effect of different Treatments on Plant height. Number of branches. Number of pods and Shelling percentage of Groundnut.

Tab	Table 2 : Effect of different treatments on 100 kernel weight, oil percentage, number of nodules per plant and dry weight of nodules	its on 100	J kerner	weigut, t	in perce	Ilago, IIu		monne	het hiam	l allu ul	v weigin	UI IIUUU	CS.				
	Treatments	100	100 kernel weigh	weights(ts(g)		Oil %	%		Ž	No of nodules/plant	les/plan		Dry wei£	Dry weight of nodules/plant(mg)	dules/pl	int(mg)
		2019	2020	2021	Pooled	2019	2020	2021	Pooled	2019	2020	2021	Pooled	2019	2020	2021	Pooled
Ľ	Control (no application of P)	38.43	38.14	41.05	39.21	48.24	49.24	45.09	47.52	26.50	21.56	17.89	21.98	32.58	32.89	33.02	32.83
\mathbf{T}_2	Application of 20 kg/ha of P	39.10	38.80	43.48	40.46	48.44	49.21	49.70	49.12	33.50	27.44	24.11	28.35	42.09	36.67	43.76	40.84
\mathbf{T}_{3}	Application of 40 kg/ha of P	38.39	38.18	43.14	39.90	48.50	48.95	49.83	49.10	34.61	28.22	21.78	28.20	70.50	38.39	39.24	49.38
\mathbf{T}_{4}	Application of 60 kg/ha of P	38.60	39.30	43.94	40.62	48.56	48.97	48.45	48.66	34.61	25.44	20.67	26.91	67.08	42.56	37.69	49.11
\mathbf{T}_{s}	Application of 20 kg/ha of P + DGRC culture(10g/kg seed)	41.00	40.70	41.23	40.98	48.69	49.65	47.63	48.66	38.61	26.89	24.11	29.87	78.33	45.44	43.54	55.77
Ľ	, Application of 40 kg/ha of P+ DGRC culture(15g/kg seed)	42.80	41.82	44.67	43.10	48.96	47.34	49.02	48.44	43.14	29.67	26.44	33.08	77.54	55.92	47.66	60.37
\mathbf{T}_7	, Application of 60kg/ha of P+ DGRC culture(10g/kg seed)	42.37	42.04	42.76	42.39	49.51	49.23	49.20	49.31	41.31	26.33	22.78	30.14	54.25	47.81	42.80	48.29
L [®]	Application of FYM @ 2.5 t/ha	40.85	40.53	42.19	41.19	48.88	49.18	45.41	47.82	46.86	26.89	19.00	30.92	71.00	44.70	36.96	50.89
\mathbf{T}_{9}	Application of FYM @ 2.5 t/ha+ DGRC culture(10g/kg seed)	41.33	41.01	41.74	41.36	49.21	49.62	47.29	48.71	45.72	26.67	27.22	33.20	66.53	49.61	51.47	55.87
\mathbf{T}_{10}	 Application of DGRC culture (2 kg) enriched FYM@100 kg/ha. 	40.56	40.24	41.50	40.77	49.39	49.63	50.16	49.73	39.42	23.11	25.22	29.25	68.69	37.74	48.03	51.88
$\mathbf{T}_{\mathbf{n}}$	Application of FYM @ 5 t/ha + PSB (15ml/kg seed)	42.92	42.02	43.58	42.84	49.54	50.21	49.22	49.65	46.75	35.00	30.33	37.36	72.50	65.33	57.53	65.12
\mathbf{T}_{12}	² Application of 40 kg/ha of P+PSB	42.57	42.19	43.36	42.71	49.18	50.07	47.81	49.02	45.28	31.11	28.56	34.98	68.00	60.03	54.28	60.77
	S.Em.±	0.86	66.0	1.60	0.69	0.32	0.87	1.88	0.70	3.70	3.07	1.65	1.69	4.60	5.15	3.33	4.36
	C.D. at 5%	2.53	2.92	SS	1.95	SN	SS	SN	SN	10.86	SS	4.85	4.79	13.48	15.10	9.75	12.79
	C.V.%	3.67	4.26	6.48	5.02	1.14	3.07	6.75	4.30	16.16	19.41	11.92	16.75	12.40	19.21	12.90	14.80
	Y S.Em.±	ı	ı	1	0.30	1	1	1	0.30	1	1	1	0.89	ı			1.28
	C.D. at 5 %	1			0.84	1	1		SN				2.51	ı	1	ı	3.75
	YXTS.Em.±				1.20				1.21				2.94				4.42
	C.D. at 5 %	1		'	NS	1			SN			,	SN	1	'		12.50

weight of nodules متام مس 10010 ոքորվութ 100 kernel weight oil n \$ Ş Table 2 • Effect of different tre

	E		N uptake(kg/ha)	e(kg/ha)			P uptake	P uptake(kg/ha)			K uptak	K uptake(kg/ha)	
	Treaments	2019	2020	2021	Pooled	2019	2020	2021	Pooled	2019	2020	2021	Pooled
F	Control (no application of P)	96.4	116.9	114.4	109.3	6.27	11.38	6.52	8.06	22.58	30.14	28.20	26.97
\mathbf{T}_2	Application of 20 kg/ha of P	98.3	136.6	128.6	121.2	6.97	11.80	7.14	8.64	23.84	35.96	31.24	30.35
\mathbf{I}_{3}	Application of 40 kg/ha of P	111.8	104.4	138.0	118.1	7.50	12.75	7.08	9.11	29.20	40.01	29.90	33.04
\mathbf{T}_{4}	Application of 60 kg/ha of P	114.0	128.8	146.9	129.9	9.78	14.26	7.94	10.66	28.40	40.28	34.52	34.40
\mathbf{T}_{5}	Application of 20 kg/ha of P + DGRC culture(10g/kg seed)	97.8	137.2	157.7	130.9	60:6	12.91	7.47	9.82	25.21	40.13	29.62	31.65
Ľ	Application of 40 kg/ha of P + DGRC culture(15g/kg seed)	120.2	166.4	189.3	158.6	9.18	15.54	10.06	11.59	28.64	44.73	34.37	35.91
Τ,	Application of 60 kg/ha of P + DGRC culture(10g/kg seed)	124.2	151.9	157.8	144.6	10.61	18.02	00.6	12.54	32.57	51.28	34.97	39.61
Ľ	Application of FYM @ 2.5 t/ha	104.7	147.8	142.1	131.5	8.20	13.00	8.63	9.94	24.40	37.09	35.84	32.44
Ţ	Application of FYM @2.5 t/ha+DGRC culture(10g/kg seed)	106.7	155.0	169.8	143.8	7.34	13.84	9.79	10.33	23.19	38.51	33.90	31.87
\mathbf{T}_{10}	Application of DGRC culture (2 kg) enriched FYM@100 kg/ha.	105.3	118.3	158.5	127.3	6.91	11.92	10.92	9.91	26.18	38.13	36.54	33.62
T ₁₁	Application of FYM @ 5 t/ha+ PSB (15ml/kg seed)	122.7	170.8	153.5	149.0	9.10	16.24	90.6	11.46	30.22	48.45	42.50	40.39
T_{12}	2 Application of 40 kg/ha of P + PSB	133.2	167.2	153.8	151.4	10.39	16.39	10.76	12.52	32.39	49.83	38.48	40.23
	S.Em.±	6.5	14.7	13.9	7.1	0.97	1.25	0.83	0.61	1.94	3.47	4.03	1.90
	C.D. at 5%	19.2	SN	SN	20.0	2.92	3.61	2.50	1.71	69:5	10.14	NS	5.37
	C.V.%	10.1	18.0	15.9	15.8	19.63	15.86	17.23	17.52	12.19	14.77	19.59	16.67
	Y S.Em.±	I	ı	I	3.6	I	ı	I	0.33	I	I	I	0.80
	C.D. at 5 %	I	-	-	10.2	T	ı	T	0.93	-	ı	I	2.27
	YXTS.Em.±	I	1	I	12.3	ı	ı	I	1.05	-	ı	I	3.29
	C.D. at 5 %	ı	ı	ı	NS	'	ı	I	NS	ı	1	ı	NS

Table 3 : Effect of Different Treatments on Nutrients Uptakes by plant.

Γ		Pooled	583	690	755	739	778	857	827	711	737	695	851	885	38	107	14.91	15	42	65	NS
	a)														e.			_	4		
	l (kg/h	2021	529	664	663	610	999	828	719	652	698	725	758	829	7	NS	19.09	ı	ı	ı	ı
	Uil yield (kg/ha)	2020	069	844	935	950	1019	1021	1051	877	931	790	1087	1105	74	216	13.54	I	I	ı	1
		2019	531	562	666	658	665	721	711	605	583	570	708	721	39	115	10.59	I	I	I	ı
	a)	Pooled	Pooled	1230	1403	1539	1517	1595	1775	1677	1483	1509	1397	1713	1800	73	206	14.12	31	86	127
	d (kg/h:	2021	1191	1336	1334	1257	1386	1691	1459	1427	1465	1446	1543	1727	145	NS	17.41	ı	ı	ı	
-	Kernel yıeld (kg/ha)	2020	1401	1714	1909	1940	2053	2162	2137	1784	1876	1593	2165	2207	146	427	13.2	ı	ı	I	
	Ke	2019	1099	1159	1373	1355	1345	1401	1435	1238	1184	1153	1430	1466	H	226	10.21	ı	ı	ı	1
	(Pooled	3068	3441	3758	3703	3835	4325	4144	3689	3826	3601	4245	4249	200	565	15.69	8	231	346	SN
	Haulm yıeld (kg/ha)	2021	3113	3603	3604	3386	3734	4561	4072	3896	4236	4210	4395	4233	441	SN	19.48	1	1	ı	
	ulm yıel	2020	3463	4004	4377	4481	4726	5103	5096	4322	4511	3907	5145	5135	362	1062	13.87		1	ı	
	На	2019	2627	2717	3292	3243	3045	3310	3264	2848	2731	2685	3194	3380	185	543	10.59			ı	
		Pooled	1845	2076	2264	2236	2321	2579	2473	2199	2216	2072	2462	2590	109	308	14.35	45	127	189	SN
	(kg/ha)	2021	1774	1963	1946	1831	2016	2463	2150	2106	2129	2116	2208	2476	213	SN	17.57			ı	
yıcıu, ıı	Pod yield (kg/	2020	2094	2528	2767	2831	2992	3159	3149	2639	2759	2368	3102	3167	221	648	13.69	ı		ı	
nod IIO si		2019	1667	1736	2079	2045	1956	2116	2120	1852	1759	1731	2075	2128	113	330	10.06	1	ı	I	1
	Treatments		Control (no application of P)	Application of 20 kg/ha of P	Application of 40 kg/ha of P	Application of 60 kg/ha of P	Application of 20 kg/ha of P + DGRC culture(10g/kg seed)	Application of 40 kg/ha of P + DGRC culture(15g/kg seed)	Application of 60 kg/ha of P + DGRC culture(10g/kg seed)	Application of FYM@2.5t/ha	Application of FYM @ 2.5 t/ha+DGRC culture (10g/kg seed)	Application of DGRC culture (2 kg) enriched FYM@ 100 kg/ha.	Application of FYM @ 5 t/ha + PSB (15ml/kg seed)	Application of 40 kg/ha of P+PSB	S.Em.±	C.D. at 5%	C.V.%	Y S.Em.±	C.D. at 5 %	YXTS.Em. ±	C.D. at 5 %
			ц.	\mathbf{T}_{2}^{2}	\mathbf{T}_{3}	\mathbf{T}_{4}	, L	T,	\mathbf{T}_{τ}	L [®]	T,	\mathbf{T}_{10}	$\mathbf{T}_{\mathbf{n}}$	\mathbf{T}_{12}							

Table 4 : Effect of different treatments on pod vield, haulm vield, kernel vield and oil vield of groundnut.

	Treatments	GMR (Ra./ha)	CoC (Ra./ha)	NMR (Ra./ha)	BCR
T ₁	Control (no application of P)	95297	36908	58389	2.58
T ₂	Application of 20 kg/ha of P	107174	37477	69697	2.86
T ₃	Application of 40 kg/ha of P	116906	38046	78859	3.07
T ₄	Application of 60 kg/ha of P	115412	38616	76796	2.99
T ₅	Application of 20 kg/ha of P + DGRC culture(10g/kg seed)	119799	38046	81752	3.15
T ₆	Application of 40 kg/ha of P + DGRC culture(10g/kg seed)	133358	38616	94743	3.45
T ₇	Application of 60 kg/ha of P + DGRC culture(10g/kg seed)	127854	39185	88669	3.26
T ₈	Application of FYM @ 2.5 t/ha	113714	38616	75098	2.94
T ₉	Application of FYM @ 2.5 t/ha+DGRC culture(10g/kg seed)	115007	39185	75822	2.93
T ₁₀	Application of DGRC culture (2 kg) enriched FYM@100 kg/ha.	107633	37545	70087	2.87
T ₁₁	Application of FYM @ 5 t/ha+ PSB (15ml/kg seed)	127762	41006	86755	3.12
T ₁₂	Application of 40 kg/ha of P + PSB (15ml/kg seed)	133559	38729	94829	3.45

 Table 5. : Economics of different treatments.

yield.

In pooled results, application of 40 kg/ha of P + PSB or DGRC culture @ 15 ml/kg seed, was revealed significantly higher pod yield (2590 kg/ha), haulm yield (4249 kg/ha), kernel yield (1713 kg/ha) and oil yield (885 kg/ha), which was remained at par with application of 20 kg/ha of P + DGRC culture(10g/kg seed) T_{s} , Application of 40 kg/ha of P + DGRC culture(15g/kg seed) T_6 , Application of 60 kg/ha of P + DGRC culture(10g/kg seed) T₇ and application of FYM @ 5 t/ha+ PSB (15ml/ kg seed) T₁₁. A substantial quantity of applied P becomes unavailable to plants through complexation under calcareous and alkaline soil conditions with highly reactive Ca^{2+} . It has also been documented that P anions are very reactive, forming metal complexes with metal cations such as calcium in calcareous and alkaline soil. These reactions reduce the efficiency of applied P fertilizers by approximately 80% (Salvagiotti, 2017). Microorganisms such as phosphate solubilizing bacteria have been reported to modify phosphorus nutrition and increase its Solubilization in soil through many processes such as, they may decrease the pH of the soil by the producing organic (gluconic acid) and mineral acids, alkaline phosphatases, phytohormones and H⁺ protonation, anion exchange, chelation and siderophores production which promote P solubilisation in soil (Rodriguez and Fraga, 1999). Moreover, the use of organics with inorganic fertilizers leads to better soil moisture utilization, nutrient uptake and less fluctuation in the soil temperature and improves soil organic matters which increase the soil water holding capacity, soil aggregation, microbial activity and soil porosity ultimately leading to higher crop productivity (Badole et al., 2003). Similar results were also reported by many other researchers which state that integration of chemical and organic sources led to higher crop productivity (Biswas *et al.*, 2003 and Soumare *et al.*, 2003).

Effect of different P management options with PSB cultures on farm profitability and nutrient uptake

Economics of different treatments are presented in Table 5. Gross realization, cost of cultivation, net realization and B:C ratio of different treatments was worked out on the basis of current market prices of groundnut and inputs used. The results indicated that application of 40 kg/ha of P + PSB (15ml/kg seed) was recorded higher gross return (Rs. 1,33,559/ha), net return (Rs. 94,829/ha) and B:C ratio (3.45). Similarly, highest nutrient uptake of phosphorus (12.52 kg/ha) and potassium (40.23 kg/ ha) in groundnut after harvest was noticed with the application of $40 \text{ kg P}_2\text{O}_5$ /ha PSB (15ml/kg seed). In case of nitrogen uptake (158.6 kg/ha) was higher with the application of 40 kg/ha of P + DGRC culture (15g/kg seed) (Table 3). Integrated application of P exits in the soil in several organic and inorganic forms in soil organic matter, minerals and in the soil solution. Plants taken up as orthophosphate ions from the soil solution. To maintain equilibrium, P moves from more available organic and inorganic pools to the soil solution. This more available or liable P includes mineralizable organic P, readily exchangeable adsorbed P moves from less available pools which include stable organic P and is strongly absorbed to soil minerals and compounds into liable pools to maintain P equilibrium status in the soils, thereby increases the nutrient uptake and biological yield of crops (Hao and Chang, 2002). Moreover, integrated P management using chemical 40 kg/ha P fertilizer + PSB culture or DGRC culture led to reduction in plant requirements for inorganic P fertilizer which is likely to reduce cost of cultivation by reducing the dependent as on chemical P fertilizer. The results are in close agreement with the findings of many researchers (De Jager *et al.*, 2001; Palm *et al.*, 2001 and Ouedraogo *et al.*, 2001). The present study revealed that application of 40 kg/ha P_2O_5 /ha + DGRC culture effective in improving the growth, productivity and profitability and nutrient uptake of groundnut.

Conclusion

From the present study authors conclude that, application of 40 kg $P_2O_5/ha + PSB$ (15 ml/kg seed) or DGRC culture showed significant increase in the growth and yield parameters of groundnut *viz.*, plant height (21.04 cm), number of branches per plant (4.0), number of pods per plant (14.44) and pod yield (2590 kg/ ha) as compare to other treatments and it has saved 20 kg P_2O_5/ha by increasing the higher gross return (Rs. 1,33,559/ ha), net return (Rs. 94,829/ha) and B:C ratio (3.45) and the highest nutrient uptake of phosphorus (12.52 kg/ha) and potassium (40.23 kg/ ha) in pooled results.

References

- Badole, S.B., More S.N., Adsul P.B., Shaikh A.K. and Dhamak A.L. (2003). Residual effect of integrated nutrient management system on yield and nutrient uptake of summer groundnut. J. Soil and Crop, 13(1), 77-80.
- Biswas, P., Hosain D., Ullah M., Akter N. and Bhuiya M.A. (2003). Performance of groundnut (*Arachis hypogaea* L.) under different levels of *Brady rhizobium* inoculums and nitrogen fertilizer. *SAARC J. Agricult.*, 1, 61-68.
- De Jager, A., Onduru D., Van Wijk M.S., Vlaming J. and Gachini GN. (2001). Assessing sustainability of low external input farm management systems with the nutrient monitoring

approach: A case study in kenya. *Agricultural Systems*, **69**, 99-118.

- Hao, X. and Chang C. (2002). Effect of cattle manure applications on soluble and exchangeable cation in soil. *Soil Sci.*, **167**, 126-134.
- Ouedraogo, E., Mando A. and Zombre N.P. (2001). Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. *Agricult. Ecosys. Environ.*, 84, 259-66.
- Palm, A.C., Gachengo C.N., Delve R.J., Cadisch G and Giller K.E. (2001). Organic inputs for soil fertility management in tropical agro-ecosystems: Application of an organic resource database. *Agricult., Ecosys. Environ.*, 83, 27-42.
- Ramana, S., Biswas A.K., Singh A.B. and Yadava R.B.I. (2002). Relative efficacy of different distillery effluents on growth, nitrogen fixation and yield of groundnut. *Bio resources Technology*, **81**, 117-121.
- Raychaudhury, M., Ngachan S.V., Raychaudhury S. and Singh A.L. (2003). Yield response of groundnut to dual inoculation and liming of an acid hill Ultisol of Manipur. *Indian J. Agricult. Sci.*, **73**, 86-8.
- Rodriguez, H. and Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. *Biotechnol. Adv.*, **17**, 319-339.
- Salvagiotti, F. (2017). S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition. *Field Crops Res.*, **203**, 128-138.
- Soumare, M., Tack F.M.G. and Verloo M.G. (2003). Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. *Bioresources Technology*, 86, 15-20.